Wavelets: Mathematical Preliminaries

Pieter W. Hemker, Tom H. Koornwinder, and Nico M. Temme

Abstract. This paper contains some mathematical preliminaries needed for a
good understanding of wavelets. The first section discusses Hilbert spaces. The
second section deals with Fourier transformation. Finally, the third section gives
a short introduction to Riesz bases and frames.

§1 Hilbert space theory

A good introduction to this topic is Rudin [3]. We summarize the main elements
needed for wavelets. In Rudin [4] the background for measure and integration theory
can be found. We have also used the paper Heil & Walnut [2] for preparing this
document.

1.1 Conventions

— NN is the set of positive integers;

—  ZZ is the set of integers;

— IR is the set of real numbers;

—  Cis the set of complex numbers. The modulus of a complex number z € C is
denoted by |z|, the complex conjugate by Z.

Unless otherwise indicated, integration is always with respect to Lebesgue measure.
A property is said to hold almost everywhere (a.e.) if the set of points where it fails
has Lebesgue measure zero. All functions considered are complex-valued, unless
otherwise indicated.

Definition 1.1.
(1) The support supp(f) of a continuous function f on R is the closure in R? of

{z eR?| f(z) # 0}.
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(2) The characteristic function of a set E C R? is xg(z) := { (1): ;;; ; g’

1, ifz=y,

0, ifz#y.

(4) If z € R? then |z] == (22 +--- + z'ﬁ)% is the norm of z. If 7,y € R then
T.Yy: =Ty + -+ Taya is the inner product of z and y.

(3) The Kronecker delta is bz, := {

1.2 Normed linear spaces

Let V be a normed complex linear space, with norm of x denoted by |z||. Every
normed linear space is a metric space with respect to the distance function d(z,y) :=
Iz - yll.

Definition 1.2.

(1) A sequence of elements {Tn}n=1,2,.. of V is called a Cauchy sequence if for
every € > 0 we can find N € IN such that ||z, — Tn| < € if n,m > N.

(2) A normed linear space V is said to be complete if every Cauchy sequence has
a limit in V. That is, if {z,} is a Cauchy sequence in V, then there exists
an element £ € V such that lim,_,« ||z — z.| = 0 (equivalently written as
im0 Tn = z). A complete normed linear space is called a Banach space.

Let V be a complex linear space. Let an inner product be defined on the
Cartesian product V x V. That is, corresponding to each z,y € V there is a
complex number, called the inner product of z and y, and denoted by (z,y), such
that
(a) (z1+72,9) = (z1,9) + (22,9),

(b) (az,y) = a(z,y), for any complex number o,
(©) (z,y) = (y,2),
(d) (z,z) >0forz #0.

Any linear space with an inner product is called an inner product space. Ev-

ery inner product space is a normed linear space with respect to the norm |z| =
(z,7).

A linear inner product space V that is complete under the norm induced by
the inner product is known as a Hilbert space. (Thus V is also a Banach space with
respect to this norm.)

Definition 1.3. For a Lebesgue measururable function f on R? put
1/p
Wl o= ([ 1f@Pds) ", 1<p<co,
R4
oo = ess sup,epalf(z)| := inf{X € R | |f(z)| < X almost everywhere}.

Thus 0 < ||f|l, < co. Then LP(R?%) (1 < p < o) is defined as the space of all
Lebesgue measurable functions f on R? for which ||f [lp < o0, with the convention
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that two functions f,g € LP(R?) for which ||f — gllp = 0 (or, equivalently, f(z) =
g(z) outside a set of Lebesgue measure zero) will not be distinguished from each
other in LP(R%).

It is well known that, for 1 < p < o0, LP(]Rd) is a Banach space with norm
|- llp, and that L2 (R?) is a Hilbert space with inner product

(frg) == / f() 3@ d.

The Hélder ineguality states that (f,g) < || fllp llgllg, where g is the conjugate
exponent of p, i.e., 1/p+ 1/¢ = 1. In particular we have the Cauchy-Schwarz
inequality which states that, in any Hilbert space, |(f,9)] < || fll2 llgll2-

Next we give a formulation of the important Fubini theorem, but without taking
care of all subtleties. (See Rudin [4, Theorem 7.8] for details.) Below, the unitiated
reader may read IR for X and Y and Lebesgue measure for p and v.

Theorem 1.4. (Fubini’s theorem) Let X and Y be measure spaces with o-finite
measures u respectively v. Let u x v be the product measure on X x Y.
(i) If f is a nonnegative measurable function on X x Y then

| tawsn = [ ([ renow)ae = [ ([ @) o),

(1.1)
where possibly all three members of (1.1) are equal to oo.
(ii) If f is a measurable function on X x Y such that one of the members of (1.1),
with f replaced by |f|, is finite, then f itself satisfies (1.1), with all members
of (1.1) well-defined and finite.

1.3 Hilbert spaces

Definition 1.5. Let H be a Hilbert space. Let {y.} (n € IN) be a sequence
of elements of H and {Z4}aca a countable system of elements of H (A being a
countable index set).

(1) We say that y, converges toy € H as n — oo, and we write yn — y, if
limy oo |y = ynll =0.

(2) We write o2 | yn = s, and say that the series converges conditionally to s, if
S h_1Tk — S asn — oo.

(3) The series 3¢ 4 Ta converges unconditionally if for every arrangement of its
terms as a sequence {zp}n=1,2,.. the series } oo, zn converges conditionally.
(Then all these series converge to the same sum.)

(4) The series 3, ¢ 4 Ta converges absolutely if 3¢ 4 | zall < oo.

(5) The span of {z,} in H is the set of all finite linear combinations of the Zq.
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6) {z.) is an orthogonal system if (a,Zg) = 0 whenever a # (3.

E7§ %z:% is an orthonormal system if it is orthogonal and ||zq|| = 1 for all a or,
equiva.lently, if (chzﬂ) = 6a,ﬂ for all o, 8. . .

(8) {zo} is complete if Span{z} is dense in ‘H or, equivalently, if the only element
z € H orthogonal to every T is z =0.

Remark 1.6. o )
o A series 3¢ 4 Ta converges unconditionally to s iff, for each € > 0, there exists

a finite subset B of A such that ||s— 3 cc Zall < € for all finite subsets C > B

of A.
e Absolute convergence of a series implies unconditional convergence but not

conversely. N
e In the following, convergence of a series will mean unconditional convergence.
Quite often, the index set will be the set Z of all integers.

Theorem 1.7. (The Plancherel Theorem) Given an orthonormal system {e,} in
a Hilbert space H, it can be shown that the following statements are equivalent:

(1) {ea} is complete.

(2) gl(x,eﬂn2 = |z||? forallz e ™. .

3) z= Z(z, en)en for allz € H.

An orthonormal system satisfying these equivalent conditions is called an or-
thonormal basis. Statement (2) of (1.2) is referred to as the Plancherel formula for
orthonormal bases. In any expansion z = ) __cne, the coefficients ¢, are unique
and given by statement (3) of (1.2).

Every Hilbert space has an orthonormal basis, but not necessarily countable.
We will always assume that the Hilbert space under consideration has a countable
orthonormal basis or, equivalently, that it is separable.

A standard example of a separable Hilbert space is the space £? of sequences
{¢n}nez such that 3 |c.|> < co. The inner product of two sequences {c,} and
{d,} is then given by ", c,.d,. All separable Hilbert spaces are isomorphic to £2.

1.4 Operators

Definition 1.8. Assume H and K are Hilbert spaces with norms || - || %, || - [k, and
inner products (-,-)#, (-,-)x respectively, and that S is a linear operator S: H — K.
(1) S is 1-1 or injective if z # y implies Sy # Sz.

(2) The range of S is Range(S) := {Sz |z € H}.

(3) S is onto or surjective if Range(S) = K.

(4) S is bijective if it is both injective and surjective.
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(5) The norm of S is defined by ||S| := sup{||Sz||c | z € H, ||z|ln = 1}. We have
ISzl < IS |z

(6) S is bounded if ||S|| < co and continuous if z,, — z implies Sz, — Sx. These
two properties of a bounded operator are equivalent.

(7) S is open if there is a positive constant C such that ||Sz|x > C|lz|ln for all
reH.

(8) The adjoint of a bounded operator S is the unique operator S*:XC — H such
that (Sz,y)x = (z,S*y)wn for all z € H and y € K. It is easy to show that

I15*1 = 1IS1-
(9) A bijective operator has an inverse S~': X — M defined by setting S~ly =z
if Sz =y.

(10) We say that a bounded operator S is boundedly invertible if S is bijective with
bounded inverse. In this case |S7!|!||z|n < ||Szllc < S|l lzll# for all
zeM.

(11) S is an isometry or norm-preserving operator if ||Sz||x = ||z||n for all z € H.
This is equivalent to (Sz, Sy)x = (z,y)n for all z,y € H.

(12) S is a unitary operator of H if it is a bijective isometry S:'H — H. Equivalently,
S is a bounded operator of H such that §5* = I = §*S.

Definition 1.9. Assume H is a Hilbert space with norm | - | and inner product

(,+), and that S,T:H — H are bounded linear operators.

(1) S is self-adjoint if S* =S.

(2) S is positive, denoted by S > 0, if (Sz,z) > 0 for all z € H. All positive
operators are self-adjoint.

(3) Wesay that S>T if S—-T >0.

(4) S is positive definite if (Sz,z) > 0 for all z # 0 or if, equivalently, S is positive
and boundedly invertible.

Each positive operator S has a well-defined square root S . This is the unique
positive operator T such that 72 = S.

Each invertible operator T has polar decomposition T = AU, where A is positive
definite and U is unitary. Both are uniquely determined by T: we have A = (TT*)%
and U = (TT*)"2T.

§2 Fourier transformation

Good introductions to this topic are Dym & MacKean [1] and Stein & Weiss [5].

2.1 General properties
The Fourier transform F(f) = f of a function f € LY(R?) is defined as

flo = [ fa)eteds, gem? (21)
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Then fe Co(]Rd), i.e., f is continuous and f({) tends to 0 as |£] tends to oo.
Iff e L! (]Rd) L2 (]Rd) then fe Lz(]Rd) and Plancherel’s formula

_ ,n,—-d ey 2 ]
[ e ds =~ [ @) de (22

is valid. Thus the Fourier transform F is an isometry from the dense subspace
LY(R?) N L2(RY) of L*(R?) into L3(R?, (2m)~4dg). This isometry l:as a unique
continuous extension to an isometry F: f — &f from L? (]l.{d) i.nto L*(R*, Sz,r)—d dg).
This defines the Fourier transform on L?(IR®). In practice, if f € L*(R?) then we
find f by first choosing a sequence of functions fa € LM(RY) N L2(RY) such that
fa— finL? (R?). Then fo— f with convergence in L? (R%). One way to choose
fn is to set fa := f X{=n,njé- Thus, if we write

14 noscofu(z) = f(z) when fn — f converges in L2(IR?)

then -
fO =it [ f@)e 67 d 23)

[-n,n]¢

for f € L2(RY).
The Plancherel formula (2.2) implies Parseval’s formula

/ £(@) 9(@) de = (2m)~ / FO50d, focI ®Y).  (24)
R4 R4

The Fourier transform is a bijection from L2(IR?) onto itself. It can be formally
inverted by

(F7lg)(z) = (2m)~4(Fg)(-z). (2:5)
This means for f € L*(R%) that
£(z) = (@0~ Lim e / Fle) eit= de. (2.6)

[—-n,n]d

If, moreover, fe L'(R?), this inversion formula can be written as
fl@) = [ Floeee e 27)

If f € LY(RY) such that also f € L'(IR?) then both f and f are continuous and
formulas (2.1) and (2.7) are valid.

The class S = S(R?) of rapidly decreasing C*°-functions on R? consists of all
C*-functions ¢ on R such that all partial derivatives D*y(z) tend to 0 in absolute
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value more rapidly than each inverse power of |z| as |z| tends to co. The space
S(RY) is dense in L2(R%) and L!(IR?). The Fourier transform maps S bijectively
onto itself. If two functions f and g on R?, each being the product of a L!-function
and a polynomial on RY, satisfy

/ f(z) 121\(3:) dr = / g(z)Y(z)dz for ally € S, (2.8)
R4 R4

then we call g the Fourier transform in the weak sense of f. If f € L*(R%) or
€ LY(R?) then the ordinary Fourier transform f is also the Fourier transform in
the weak sense. Conversely we have:

Lemma 2.1. Let f and g be functions on IR?, each being the product of a L*-
function and a polynomial on R®. Suppose that they satisfy (2.8). Then, if f €
LY(R?) or L*(IR?) then g = f.

2.2 Translation, modulation and dilation

Definition 2.2. Given a function f € L? (IRd) we define the following operators

Translation: T.f(z) = f(z — a), fora e R? ;
Modulation: E.f(z) = e**f(x), fora € R?;
Dilation: D,f(z) = |a|~%?f(z/a), forae R\ {0}.

Each of these is a unitary operator of L2(IR?), and we have
(f7 Tag) = (T—af1 g); (f: Eag) = (E—afa g); (f: Dag) = (Dl/afa g)'
In connection with the Fourier transform we have the following elementary formulas:

T.f =E-of; Eof =Tuf; Duf = Dijaf. (2.9)

2.3 Convolution

The convolution product of two functions f, g on R4 is given by

(F+a)e) = [ 1@t v)dy (2.10)

whenever this formula has meaning. We mention two cases where this is the case.
First, if f € L'(IR%) and g € LP(R?) (1 < p < 00) then f xg € LP(R?),

IF*glle < £l llglls, (2.11)
and, for p=1or 2, _

(f*9)7(&) = f(©)3(8)- (2.12)
Second, if f,g € L*(R?) then f * g € Co(R?) and

If *glloo < lIfll2 llgll2- (2.13)
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2.4 Mean and variance

We specialize to d = 1. Suppose that f € L?(R) such that also f’ and z +— zf(z)
are in L2(R). We define the mean and variance for the normalized probability
distributions obtained from |f(z)[? dz and |£(£)|? d¢:

ulf) = (If112)"? /R z|f(@) ds, (2.14)

u(F) = (1712 /R £17(e)? de, (2.15)
3

o(f) = (1fll) ™ [ [e-unrier d:c] , 2.16)
. . o 3

olF) = (1) [/R (&—u(f»ﬂf(fn?ds] . (217

The interval [u(f) — o(f), u(f) + o (f)] gives a qualitative indication of the set
where f attains its most substantial nonzero values. The interval [u(f)—o(f), u(f)+

o(f)] plays a similar role for f. The two variances o(f) and o(f) cannot be arbi-
trarily small. We have Heisenberg’s inequality (cf. for instance Dym & McKean |1,
§2.8)) )

o(f)o(f) 2 3- (2.18)
In the quantum mechanical interpretation this means that position and impulse
cannot be measured simultaneously in an arbitrarily precise way. If u(f) = 0 and
() = 0 then equality is attained in (2.18) iff f(z) = const. e~ for some A > 0.

2.5 Poisson summation formula

This formula describes the relation between a series built from an underlying func-
tion and a series built from the Fourier transform of the same function. We specialize
tod=1

Theorem 2.3. Let f be a rapidly decreasing C*°-function on R. Then we have

= —ina 1 — 7 2rm+a iz(2nm+ta
S emfr =g 3 F(EGEE) estrmian,

where a,b,z € R, b # 0.

A special case is

Y fm= Y Flomm).

n=—o0o m=—00
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Similar forms for sine or cosine transforms follow from taking f odd or even, re-
spectively. .
A nice example, that leads to the theory of theta functions, is the relation

(o]

> 2 1 2 -1
Z e = Z e~ Tm’s , s> 0,
NG

n=-—00 m=—00
which follows from the choice

f(z) = exp(—-7sz2), f(&) = _\/1_53~e’/(4m)_

§3 Riesz bases and frames

Background information on this topic can be found in Young [6].
3.1 Riesz bases

Definition 3.1. A Riesz basis of a Hilbert space H is a system {z,} in H such that
there is an orthonormal basis {e,} of H and & bounded and boundedly invertible
linear operator T of H with the property that Te, = x, for all n.

Proposition 3.2. A countable system {z,} in a Hilbert space H is a Riesz basis if
and only if the two following properties hold.
(a) For every x € H there are unique coefficients ¢, such that

T = Zc,.:cn (unconditional convergence). (3.1)

(b) There are positive constants A, B such that, for each z € H with expansion
(3.1),

Alz]? < S leal? < Bjz|. (32)

Riesz bases can of course be orthonormalized by the Gram-Schmidt process.
This process heavily depends on the way the Riesz basis is arranged as a sequence.
The next theorem describes a construction of orthonormal basis from a Riesz basis
which does not depend on the arrangement and which may better pass properties
of the vectors of the Riesz basis to the vectors of the orthonormal basis.

Theorem 3.3. Let {z,} be a Riesz basis of a Hilbert space H. Then there is
a unique orthonormal basis {f,} such that z, = Af, for some positive definite
operator A.
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Proof: Certainly, T, = Te, for some orthonormal basis {en} and some invertible
operator T. Now use the existence and uniqueness of the polar decomposition T =
AU (cf. §1.3, A is positive definite, U is unitary) and the one-to-one correspondence
between unitary operators U and orthonormal bases { fa} via fn=Ue,. B

The following construction of an orthonormal basis from a Riesz basis is maybe
better known. For convenience assume that the index n in the Riesz basis z, runs
over Z. Then vectors z € M can be identified with sequences {c,} € £2 by (3.1).
(However, this does not identify the inner products on H and £ with each other.)
This also implies an identification of operators X of H with operators X of & (i.e.,
with matrices wich have row and column indices running over ZZ): If X = (X )
then Xz; = ¥, Xk 12x. Associate with {z,.} the Gram matriz G = (Gk,1) given by

Gr,1 = (21, k)- (3.3)

This is a positive definite matrix of which we can take the square root. This yields
another positive definite matrix B = (Bi,;) and hence, by the above mentioned
identification, a bounded operator B on H with bounded inverse.

Theorem 3.4. The operator B is positive definite and {B~'z,} is an orthonormal
basis, the same as constructed in Theorem 3.3.

Proof: By definition, z,, = Te,, for some invertible operator T' and some orthonor-
mal basis {e,}. Hence

Gk, = (z1,Tex) = (T"z1, ex)-
Then

Gz = ZGk,zzk = Z(T':Ez, ek) Ter = T(Z(T‘-’L‘l, ek) 6k> = TT*IL
k k k

Hence G = TT*, so G is a positive definite operator and B = G is also positive
definite. Let T have polar decomposition T' = AU with A positive definite and U
unitary. Then G = TT* = A%. Hence B= A=TU™!,s0 B~lz; = UT 'z, = Ue,
so {B~!z} is an orthonormal basis since {¢;} is an orthonormal basis and U is
unitary. Since B is positive definite, the last part of the theorem follows-from the
uniqueness statement in Theorem 3.3. M

Remark 3.5. Preserve notation of the last theorem and proof. Consider the oper-
ator G which has matrix (Gk,1) with respect to the orthonormal basis {e,}. Then

Ge = ZGk,lek = Z(T‘Tez, ek) ex = T*Tey.
k k

Hence G = T*T, while we have seen that G = TT*.



Mathematical Preliminaries 23

3.2 Frames

Definition 3.6. A system {z,} (n running over a countable index set) in a Hilbert
space H is a frame if there exist numbers A, B > 0 such that for all x € H we have

Allzl* <) Iz, 2a)l* < B 2], (34)

The numbers A, B are called frame bounds. The frame is tight if A = B. The frame
is ezact if it ceases to be a frame whenever any single element is deleted from the
sequence.

Notice that the z, are not necessarily linearly independent. The definition
however, implies that the mapping z — {(z,z,)} is injective. If n runs over ZZ
then Definition 3.1 can be equivalently formulated as saying that the mapping
z — {(z,z.)} is open and bounded from ¥ to f2.

Remark 3.7. Let H be a Hilbert space with orthonormal basis {e1, ez, €3, .. .}.
{e1,€2/2,e3/3,...} is an orthogonal sequence, not a frame.

{e1,e2/v2, e2/V2, e3//3, es/V/3,e3/V/3,...} is a tight inexact frame.
{e1/V2,e2/V2, (e1 + €2)/2,(e1 — €2)/2} is a tight inexact frame in C2.
{2e1,€2,€3,...} is a non-tight exact frame with A =1, B = 4.

In a finite dimensional Hilbert space the exact frames are precisely the bases.

Any Riesz basis {z,} is a frame. Indeed, let z,, = Te, with {e,} being an
orthonormal basis. Then

(z,zx) = (z,Tex) = (T*z, ex).

Hence
S i@,z =Y |(T s, e)? = (T*z, T*z) = (TT*z, 2).
k k

Now (3.4) is evidently satisfied. It is also quickly seen that this frame is exact. It
can conversely be shown that any exact frame is a Riesz basis.
Let {zr,} be a frame. Define the frame operator S by

Sz = Z(z, Tk)Tk, Z € H. (3.5)
k

Then (Sz,z) = Y, |(z,zx)|? and formula (3.4) is equivalent to stating that S is a
positive definite operator satisfying Al < S < BI. Note that S = TT* in the above
example of Riesz bases.
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Theorem 3.8. Let {xn} be a frame in H and let S be the corresponding frame

operator.

(1) S is invertible and B\ < 5§71 < A7

(2) {S~'z.} is a frame with bounds B~!, A, called the dual frame of {zn}-
(3) Every z € H can be written

T = Z(z,xn)S"lxn = Z(z, S7lz,)zn.

This theorem shows that, for a set of elements {z,, }, the frame property implies
reconstructability. Via two intermediate results it is next shown in Heil & Walnut
[2] that the ‘only if’ part of the following theorem is valid, while the ‘if’ part is
obvious.

Theorem 3.9. Let {z,} be a frame in H. Then it is an exact frame if and only if
{z,} and {S71z,} are biorthonormal, i.e., if and only if

(Tmy S 2) = b

3.3 Approximation by frames

Given a frame {z,, }, we know that the mapping f — {(f,zn)} is injective, therefore
we may try to recover f from a sequence {(f,z»)}. In fact we find the following;
theorem.

Theorem 3.10. Let {z,,} be a frame with frame bounds given by (3.4), then

f= s 3 )en + B, (3.6)
where the operator R satisfies the error bound
IRl < 325 (3.7
Proof: We can write (3.6) as
f =4 Sf+ RS,
A+B

where § is given by (3.5). Hence

2
Rf=(I—A—+"§S)f-
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Thus 5
IRfI < IIT - a7 Sl

Since AI £ S < BI, we have

B-A 2 B-A

[ A [ — < —_—
5+a ST 278372

This implies (3.7). B

I

Remark 3.11.
o Clearly, if the frame is tight, then ||R|| = 0 and the approximation is exact .
¢ Suppose that we had defined Rf by f = ¢Sf+ Rf with ¢ > 0. Then we would
have arrived at Rf = (I —cS)f and (1—cB)I < I —c§ < (1 — cA)I. Hence
f=1¢Sf+ Rf with ¢ > 0. Then we would have obtained Rf = (I — ¢S) f and
(1—=cB) <I—cS<(1-cA)I. Hence

[ —cS|| < max{|1 — cA|,|1 —¢B|}.
The right hand side of the above inequality, as a function of ¢, achieves its
maximum for ¢ :=2/(A+ B).

e If the approximation is not exact, then we have 0 < A < B and (B — A) /(A +
B) < 1. Therefore we can apply the approximation formula recursively to ob-
tain corrections to the approximation. The error is shrinking, and this iterative
procedure converges to f. Indeed, write X f := 2(4A+ B)~1Sf. Then

f=Xf+Rf=Xf+XRf+R*f=---=X(1+R+---+R"Nf+ R™f

and ||R™f|| — 0. This can be written in algorithmic form as follows. First put
RS DUCERES
and then, fori =1,2,...,
e = (f,2n) = (9, 20),
e = I‘?_—E Z ez,
FOD = O 4 e(:;.
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